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Anomalous roughness exponent of growing interfaces in a disordered medium
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We study the roughness properties of an interface that is driven through a random medium. The growth is
modeled by a continuous stochastic equation with quenched noise. A new intermediate scaling regime is
introduced and analyzed. Effective self-affine properties in this regime allow us to define an effective rough-
ness exponent a,;=0.8 in excellent agreement with previous experiments.
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In recent years the motion of a nonequilibrium interface
in a disordered environment has attracted much attention
[1,2]. Applications range from wetting phenomena to motion
of polymers through random media, however, the typical ex-
perimental realization of these phenomena is the fluid flow in
a porous medium. Experiments have been performed [3-7]
to characterize the immiscible displacement of a fluid by one
that wets the medium more effectively. In this situation, the
interface separating both fluids is rough and self-affine.

The effect of disorder on the morphology of growing in-
terfaces is crucial. When the disorder is caused by thermal
fluctuations, the random field changes both in space and time
(e.g., ballistic deposition, aggregation, Eden model, and
many other growth processes [1]) and the resulting dynamics
are described by stochastic equations of the type introduced
by Kardar, Parisi, and Zhang (KPZ) [8], which are well un-
derstood. On the contrary, if the random medium is frozen in
time (e.g., a porous medium) a natural way to model its
effects is by introducing a time-independent or quenched dis-
order, as has been done by some authors [10-17]. Less is
known about these last models where the motion of the in-
terface is dominated by the pinning forces present in the
inhomogeneous medium.

In this Rapid Communication we study the quenched
model at zero temperature [10—16] in which a d-dimensional

interface, characterized by its height h(;,t) at position x and
time ¢, moves in a (d+ 1)-dimensional disordered medium.
The interface grows obeying the stochastic differential equa-
tion:

J . - -
S0 = VR0 +F 4+ n(5h), (1)

where the surface tension effects are modeled by the diffu-
sive term, F is an external driving force, and # is an uncor-
related random field with zero mean value. An important
characteristic associated with this model is that a threshold
phenomenon occurs because the above mentioned pinning
forces are able to dramatically slow down the motion of the
interface in large regions. Thus, an interface moves with a
finite velocity v(F) if the driving force exceeds a critical
value F_, and it is pinned by the disorder for F<F_.

The interface width averaged over a region of linear di-
mension L,

o(L,t)=([h(x,t) = (h(x,0)) ]2, @)
is a characterization of the statistical fluctuations and satu-
rates at long times:
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where « is the roughness exponent and B is the time expo-
nent. The saturation time, #;, depends on the system size L.
Here, we are interested in studying the behavior of the fluc-
tuations near the pinning transition.

Another important quantity is the horizontal correlation
length [ .(¢)~t"? where z is the so-called dynamical expo-
nent. This correlation length is related to the saturation time
because the saturation is reached when the condition
l.(t)~L is satisfied. Above the critical point, the diffusion
length is the only relevant scale and the correlation length
behaves as [.(t)~tY%. Only at the depinning threshold
(F=F) can the diffusive behavior change. In the limit of
strong pushing (F>F ), the interface moves very fast and
the quenched model reduces to the linear KPZ equation
(Edwards-Wilkinson model [18]), for which the exponents
are known: 8=1/4, a=1/2, and z=2 for d=1.

Recently, much analytical and numerical work has been
carried out to understand the pinning transition and to obtain
the critical exponents, but experiments, theory, and simula-
tions have not led to a consistent picture yet (see [2] for
recent reviews). Both renormalization group (RG) approxi-
mations [13] of (1) and Imry-Ma arguments [19] allow us to
obtain the values for the roughness exponent (¢=1) and
time exponent (8= 3/4) for dimension d=1 in disagreement
with a number of numerical models in 1+1 dimensions.
Martys et al. [20] and Nolle et al. [9] in a wetting invasion
model found @=0.8 and the discretized version of Eq. (1)
performed by Kessler et al. [12] gave @=0.76. Directed per-
colation and solid-on-solid type models gave a=0.63 [7,15].
Similarly, the roughness exponent measured in experiments
range from Rubio efal (a=0.73+0.03 [3]) or Horvath
et al. («=0.88+0.08 [5] and a=0.81 [4]) to Buldyrev et al.
(a=0.65 [7]).

In an enlighting paper, Amaral et al. [21] have shown
that the inclusion of the nonlinear term A(V4)? in Eq. (1)
gives a roughness exponent =0.63, in agreement with the
mapping to directed percolation but models in the universal-
ity class of Eq. (1) lead to a larger roughness exponent,
a=0.75—0.88. As has been shown by Tang et al. [22] these
two different universality classes are related to isotropy prop-
erties of the random background. The model posed in Eq. (1)
describes growing interfaces in an isotropic medium. On the
contrary, the KPZ term A(V4)? can be present for interfaces
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in anisotropic random media [22]. Most solid-on-solid type
models are expected to be in this category. Although this last
work clarifies the situation, one question remains open: What
is the reason for the difference between RG predictions and
results from both experiments and simulations for the model
(1n?

Our main purpose here is to show that there is a crossover
regime in (1+1) dimensions for the model described by (1)
with an effective roughness exponent a,;;=0.8. As we shall
see later, this intermediate regime, which appears for F
somewhat larger than F., has new scaling properties. We
speculate that this result may give an explanation of the low
value for o measured experimentally.

First, we study the statistical geometry or topography on
the random medium for d=1. For any F, let us consider the
substrate divided into two types of regions: “pinning (or
trapping) regions” and ‘“‘pushing regions.” The first one is
formed by points (x,y) verifying that F + »(x,y)<0, conse-
quently they tend to keep the interface pinned and the motion
is slowed down inside the pinning regions. However, a piece
of interface in a pushing region will be able to move fast,
since F+ n(x,y)>0 and there are no trapping sites. Two
characteristic lengths corresponding to the mean size of these
regions may be considered, £, and &_, which are the char-
acteristic size of a pushing and trapping region, respectively.
At the pinning transition, with a pushing force F=F_, the
characteristic length of a pinning region is §_~L, thus the
interface remains pinned inside a pinning region, which oc-
cupies the substrate almost completely. By increasing F,
&_ is reduced and it becomes zero rapidly, while the charac-
teristic length of a pushing region is £ ~L now. This means
that for F>F_., &, is much larger than £_, most of the
interface is inside a pushing region and moves fast, so the
long time limit corresponds to the Edwards-Wilkinson uni-
versality class. As usual, near the critical point, £_ is a rel-
evant length scale of the problem with a typical scaling law
&_~(F—F_.) ™" [23]. Numerical experiments [9], that are
believed to be in the universality class described by Eq. (1),
have obtained v=4/3 for the correlation length exponent.

In view of the previous arguments, we shall calculate the
interface width at time ¢ averaging over both pinning and
pushing regions. Suppose that an interface is driven by a
pushing force F and L is the system size, then from Eq. (2)
we can write

a*(L,t)=(1/L) f5dx[h(x,t)—(h(x,0))]?,

which can be evaluated over N, pushing segments and N _
pinning segments as

2 :l 2 2
o (L) =N+ &+ (L F)o (D+N_E (L, F)o”(1)],

where o, and o_ are the interface widths inside a pushing
and pinning region, respectively. As local quantities these
interface widths do not depend on the system size nor on the
pushing force F'; they only represent the typical behavior of
the interface inside a pushing or trapping region and can be
determined by physical arguments. Taking into account that
N, &, +N_§&_=L the last equation is expressed as follows:

N_¢& N_&
2 )ai(l)-&-( 2

0'2(L,t)~(1- )az_(t). 4)
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Let us see how we can calculate o . (¢) with simple argu-
ments already used in the literature [11,12,14]. Since the in-
terface velocity vanishes for large times inside a pinning re-
gion, as we have discussed before, we can neglect the height
dependence of the noise in Eq. (1) to describe the behavior
of a piece of interface moving through this kind of region:

i h il h +F+
52 (x7t)'—'&—x§ (x7t) "l(x),

which gives immediately o_(#)~¢** [14]. In the same way,
a piece of interface that moves inside a pushing region of the
disordered medium has a high velocity [v(F)=F1] and Eq
(1) becomes approx1mat1ve1y
pe
— = +F+ .
&th(x,t) b’x—fh(x,t) F+ n(x,Ft)

So, inside a pushing region the behavior of the interface
reduces to the case of time-dependent noise and it is well
known that o (¢)~t"4 [11,12].

A more reduced expression can be obtained when we ana-
lyze Eq. (4) in the regimes of interest. Letting F—F . as we
have discused above, only one pinning region appears in the
random medium, thus N_~1 and the expression for the in-
terface width, Eq. (4), is dominated by the second term,
yielding

172
£- (L’F)) 134 5)

L.t)~
o(L,1) ( :
and in the opposite limit F>F _, far from the transition, we
have

(6)

§+<L,F))”2tl,4
s

O'(L,t)~(

At this point, we would like to analyze in detail the two
regimes given in Egs. (5) and (6). First, in the strong pushing
regime, the exponents can be calculated in a straightforward
manner since a simple comparison between (6) and (3) leads
to 8=1/4 in this regime. As usual, at times larger than the
saturation time ¢, the width in Eq. (6) scales as
a(L)~&Y2L~12t1% | where t, is given by the condition
t,~L? and as we have discussed in a previous paragraph the
characteristic size of a pushing region is £, ~L in the strong
pushing regime. Thus, we conclude that «=1/2 in this case.
So, we have recovered the exponents of the Edwards-
Wilkinson model, as expected.

A more careful analysis is needed in the intermediate re-
gime given by Eq. (5) and this is the regime of interest for
us. Mostly, the difficulties arise from the dependence on L of
&é_(L,F) which is unknown and can be complicated. Only a
power law behavior ¢_(L,F)~L? yields a roughness expo-
nent « for times larger than the saturation time. To see that
this power law is achieved we must turn to (1) and observe
some symmetry properties in our model. For any factor A,
we can rescale (1) obtaining

INR(x,0)]  F*[Nh(x,0)]
A(N%) a(ax)?

+ —+ n(Ax,\h),

and the equation remains invariant [24]. In other words, mul-
tiplying F by some factor N\ is equivalent to rescaling our
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variables x' =\x, A’ =\h, and ¢’ = \?¢ with fixed F. So, it
is possible to rescale any distance depending on both system
size and pushing force F as

E(L,NF)=N"'&(\L,F)
and in the same way for times
7(LNF)=N\"27(\L,F).

This symmetry allows us to convert any scaling law
with F to a scaling law with the system size L. In particular,
the size of a pushing region which scales as &_(L,\F)
~(\F—F_)"" can be written as &\L,F)~\'"" and the
power law behavior is satisfied for §=1—wv. It is worth
stressing here that this invariance is a consequence of the
linear character of (1) and it would be broken down by add-
ing a general nonlinear term (e.g., [ VA(x,£)]?).

Now, we are able to calculate the exponents in the inter-
mediate regime, in which (5) describes the interface width.
An inspection of Eq. (5) immediately gives the temporal ex-
ponent B=3/4 in agreement with both previous simulations
[14,16] and RG calculation close to the pinning threshold.
Next, if we replace in (5) the behavior of ¢£_(L,F) to varying
L with fixed F, at saturation time we have

o(L)~LB~ V2 (7)
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which implies an effective roughness exponent ./
=(3 —v)/2 in the intermediate regime. Thus, from the mea-
sured value v=4/3 we obtain an effective exponent a=0.8
in good agreement with both experiments and simulations.

At long times a crossover to the Edwards-Wilkinson
model must occur and the intermediate regime can be viewed
like a crossover regime [25]. Surprisingly, an apparent
roughness exponent may be defined in this crossover regime.
Several effective models have been recently proposed in
which an effective roughness exponent was found [16,26].
This exponent seems to be a very plausible explanation of
the numerical results obtained until now.

In summary, the results presented here seem to imply that
the anomalous roughness exponent observed in wetting inva-
sion experiments is an effective exponent. An invariance in
(1) leads to a crossover regime with effective scaling prop-
erties. This intermediate regime appears for F somewhat
larger than F. and we speculate that due to the anomalous
scaling (7), apparent roughness exponents have been mea-
sured in both experiments and simulations.
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